JOURNAL OF COMPUTATIONAL PHYSICS141,37-45 (1998)
ARTICLE NO. CP985905

A Particle Algorithm for Linear Kinetic Analysis
in Tokamak Plasmas

Y. Todo and T. Sato

Theory and Computer Simulation Center, National Institute for Fusion Science,
322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
E-mail: todo@nifs.ac.jp

Received May 5, 1997

A particle algorithm for linear kinetic analysis in tokamak plasmas is developed.
Linear kinetic stability of a tokamak plasma is analyzed as an initial value problem.
Particles are used to sample plasma elements along equilibrium characteristics in
4-dimensional phase spade, (z, v, ). Each particle is accompanied with a weight
which is a function of the toroidal angle. Integrals in the phase space are eval-
uated through the weight function and the particle location in the 4-dimensional
space. Destabilization of am=2 toroidal Alfvén eigenmode is investigated as
a test of the algorithm, and convergence in number of used particles is assessed.
(© 1998 Academic Press
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1. INTRODUCTION

Kinetic analysis on magnetically confined plasmas is not so easy since the phase
concerned has a high dimension which demands large computational resources to ar
Another difficulty is the complicated characteristics of the Vlasov equation. The chara
istics are nothing but the particle orbits. For example, particle orbits deviate from mag
surfaces, and passing and trapped particles show qualitatively different behaviors fromr
other. Thus, even the linear analysis is not a simple task.

Turning to nonlinear analysis, particle simulation has been a powerful tool for the in
tigation of nonlinear kinetic phenomena in fusion and space plasmas. Super-particle
used in particle simulations, and the number of super-particles is much less than the n
of particles in real plasmas. Since the electromagnetic field is coupled with low-orde!
locity moments in the phase space, charge density, and current density, the required n
of super-particles can be reasonable. The small number of super-particles, howeve
to a thermal fluctuation much larger than that in a real plasma. Large thermal fluctua
called numerical noise, makes it difficult to deal with a phenomenon with small amplitt
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Recently, this drawback has been relaxed by the so-céfledgorithm [1-3], which was
developed in the fusion community. Furthermore, Aydemir [4] gave a clear interpret:
of theéf algorithm from a viewpoint of Monte Carlo simulation.

Thesf algorithm gives a fine prospect also of linear properties. The linear proper
an instability can be studied with ttdd particle simulation as an initial value problem |
initial perturbations are set to be sufficiently small.

Thesf algorithm, however, can be improved for linear analysis. In this paper, we dev
a particle simulation algorithm for linear kinetic phenomena in tokamak plasmas. Witt
algorithm computational resources required in dfigparticle simulation can be reducec
Super-particles are used as markers in the phase space. These marker particles are f
along their equilibrium orbits, and each of them is accompanied with a weight func
Integrals in the phase space such as number density, current density, and presst
evaluated through the particle location and the weight function. Although this new algoi
is similar to thesf particle algorithm, an essential difference is that particle weights
functions of independent variables on which the equilibrium distribution is symmetric

For example, in an axisymmetric plasma such as a tokamak plasma, the weigt
function of the toroidal angle. Toroidal location of each particle has no meaning. Gene
the phase space of a tokamak plasma with the drift-kinetic or the gyro-kinetic descri
is a five-dimensional spac®(¢, z, v, u) which demands large computational resourc
to study kinetic phenomena. The new algorithm reduces the phase space for parti
four-dimensionsR, z, v, u). Thus the required number of particles also can be reduc

This new simulation algorithm can be applied to general linear kinetic phenomer
plasmas which have a symmetric direction(s) in equilibrium. In this paper, we apply
the toroidal Alfvén eigenmode (TAE mode) [5] in a tokamak plasma. The TAE mode
attracted many scientists from the viewpoints of the basic plasma physics on the
particle interaction and the confinement of energetic alpha particles in fusion devices

We adopt a hybrid model in which plasma is divided into two parts, the energetic par
and the background plasma. The background plasma is described as a magnetohy
namic (MHD) fluid. We couple the linear particle algorithm with a linearized MHD cc
employing this hybrid model. Linear simulations are carried out fon an2 TAE mode.
The mode structure, real frequency, and linear growth rate are obtained.

The linear particle algorithm is described in Section 2. Section 3 is devoted to the pl
model and the results of the linear simulation for the= 2 TAE mode. Summary and
discussion are given in Section 4.

2. ALINEAR PARTICLE ALGORITHM

We employ the guiding-center approximation. Let us start by describing the guic
center velocityu for a particle in an electromagnetic fididandB,

U=V -+ Ve + Vs, (1)

vi = yj[b+pV xb], 2
1

Vg = g[EXb], (3)

1
Vg = q—B[—MVB x b]. (4)
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mv
Pl = q—é‘7 (%)
B
b= . (6)
dv
muj—g, = Vi - [9E ~ VB, (7)

wherem, g, v, andu are the particle mass, particle charge, parallel velocity, and magn
moment, respectively.

From Egs. (1)—(7) we obtain the drift kinetic equation which describes the time evolu
of the distribution function in the phase spaég ¢, z, v, w),

—f+ V (Buf)+88<dv”f) +ilme=o 8)
v|

We neglect for simplicity the compressibility in the phase space with the present guic
center approximation. Namely, we assume that the following relation is always satisfi

d dUH
—V B — —In 9
(U)+3<dt) ©
Equation (8) can be simplified with the aid of this assumption into,
dv” d
— f vV f =0. 10
tu T dt 81)” ( )

For linear analysis the distribution functidnis divided into two parts, the initial equi-
librium distribution fy and the deviatiod f . Equation (10) is then linearized into

0 dl)” d dv” 0
—&f - Vof — ) —§&f = f —f 11
ot + to v + ( dt )O Bv“ |:Ul v 0+ < dt Bv“ o ( )

Uo = v[bo + o'V x bo] + ﬁ[—MVB x bo], (12)

dv [
<d—t”)o — [bo+ oV x by _—EVB} (13)
1
u; = U||(3b + E[E x bo], (24)
dv q w
(15)
5b = b — by, (16)

where we neglect the deviation of magnetic field intensétg™ since many of the inter-
ested modes in tokamak plasmas are incompressible. Furthermore, thgsgWnx éb is
neglected in Eq. (14) since it is much smaller thiasb.

Let us consider an integral of the form

8I(A)E/ AST TdR dp dz dvy dp, 17)
\%
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whereA is a general function of the phase-space coordingtésthe phase space volume
andJ = BRis the Jacobian of the transformation froR, ¢, z, v, i) to an appropriate
Cartesian coordinate system.

Following Aydemir [4] we develop a particle algorithm to estiméateéA). We express
8t inaformoféf = g(R, ¢, z, v, ) fo(R, z, v, 1). Equation (17) is transformed into

2
8I(A)=/ d<p/ AgfhJdRdz dy dp, (18)

whereV, is the four-dimensional phase space volume.
According to Eq. (17) of Aydemir [4] a particle-estimate for the second integral of
right-hand side of Eqg. (18) is given by

/ AgfodedZd)H d,u
Va
N

- EZA(RJ,% zj, vyj, kDIR}, @, Zj, vy, 1) To(Ry, 2, vy, 1)
N PRy Zj, vy, 1)

. (19)

where N is the number of super-particles aqdis a probability density in the four-
dimensional phase-space volume such that

pP(R, z, vy, w)JdRdz dudyy = 1. (20)

Vg

We adopt the importance sampling method in which the probability density is giver

1
P(R, Z, vy, n) = ~ fo(R, Z, v, w), (21)
S

whereNs is the number of physical particles per unit toroidal angle. If we initially distribt
super-particles to satisfy the relation above, it is satisfied throughout the analysis.
We define a weight function of thgh particle as

1 fo(Ry, zj, vyj, i1j)
w(@)E— (R.’(p7z.7v.7,u/) . 22
j Ng j js Ul p(R;. 2. vy 1)) (22)
The particle-estimate fatl (A) is
27 N
6|<A>=/0 SCAR), @, 21, vy, 15w (@) do. (23)

=1

Our goal is to obtain the equation for the time evolution of the weight function. Fi
Egs. (21) and (22), the weight function can be relategiftas,

ST(Ry, @, zj, vyj, 1)) = 9(Ry. ¢, Zj, vy, 1j) fo(Ry, Zj, vyj. 1)

N
= Wfo(Rj»Zj»qu’Mj)wj((P)- (24)
S
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It is convenient to normalizev; (¢) to satisfy
§T(Rj, ¢, zj, vyj, i) = To(Ry, Zj, vyj, ujwj(@). (25)

We substitute Eqg. (25) into Eg. (11) and obtain

D 0 1 dU” 0

—Wwj f — f 26

th1(¢)+U0¢R8 wi(p) = A {Ul v O+(dt) o, o}, (26)
D d 0 0 dv” 0
— == 2 U+ (=) = 27
Dt 8t+uOR8R+uOZ82+<dt)08v” @)

If the weight function and the electromagnetic field have a forfsuch as

wj(p) = wJTein(p, (28)
Eq. (26) is transformed into,
D + iI’lU0¢ t 1 dUH ad
—w; = ——w; — — f — fol . 29
pt" R "I T [“1 v 0+<dt Ly (29)

Expansion to multiple toroidal mode numbers is straightforward.
Finally we show the particle-estimates of the first-order number density, current der
parallel and perpendicular pressures. They are given by

N
sn =" wj(@)S(R—R))Sz—7), (30)
j=1
N
8 =) wj(p)u;S(R— RSz - z)), (31)
j=1
N
5P = wj(p)mf S(R— RSz - 7)), (32)
j=1
§PL =B wj(@)u;S(R— RSz - z), (33)

j=1
whereSis the shape factor of a particle.

3. APPLICATION TO TAE MODE

TAE mode [5] has recently become a focus of attention for fusion physicists, sinc
can be excited resonantly with alpha particles which are produced from deuterium-tri
reactions. The free energy source for TAE modes is the spatial gradient of the alpha pe
density.

Evaluation of the linear growth rate is one of the majorissues on TAE mode. Itis neces
to know precisely the interaction between alpha particles and TAE modes. The intera
is not simple, since drift-orbits of alpha particles deviate from magnetic surfaces anc
only passing particles, but also trapped particles, can resonate with TAE modes.
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We apply the linear particle algorithm developed in the previous section to ener
particles which interact with a TAE mode. The plasma is divided into two parts, the b
ground plasma and the energetic particles. The background plasma is described by tt
MHD equations and the electromagnetic field is given by the MHD description. This
reasonable approximation under the condition that the alpha density is much less th
background plasma density. This model is first proposed by Ref. [6], and conservati
the total energy is proved in Ref. [7].

The MHD equations with the effect of energetic particles are

ap

Lo _vy. , 34
o (pV) (34)
9 1 o
p—V—i—pVoVV:(—VXB—jh)XB—VP, (35)
ot Mo
B
B vxE (36)
at
ol
S ="V PV - -DPV.v, (37)

1
J;]:]hH—l—E(PhHVXb—PhJ_VlnBXb)—VX (%b), (38)
E=-vxB, (39)

wherep is the vacuum magnetic permeability gnis the adiabatic constant, and all othe
guantities are conventional.
All MHD variables are linearized around their equilibrium distribution:

i

— V- (ooV), 40
o V - (poV) (40)
9 1 . 1 y
po—V = _VXBl_JhlJ_ x Bo + _VXBO_JhOJ_ x By — VP, (41)
ot "o Mo
0B,
W =-V x E, (42)
P
= ==V (P~ (y = DRV -, (43)
i ! b | b Prio,
JhOJ_ZE(PhHOVX 0— Ph1oVInBp x bpg) — V x B ) (44)
. 1
JhiL = a(Phulv X bo—l— Ph”ov x b1 — Ph1Vin By x bo
— PhioVIn By x by) — V x (P'“lbo> —V x (P'“Obl> , (45)
Bo Bo
E = —v x Bog. (46)

For the calculation off,, | , terms withB; are neglected, since TAE modes are incompre
ible.

The initial condition is an MHD equilibrium, where the total plasma beta is 4% at
magnetic axis and its volume-averagk ) is 0.88%. Density is uniform. The cylindrica
coordinate systenR, ¢, z) is used. The simulation domainiaz R<4a,—a<z<a,
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wherea is the minor radius. The magnetic axis locateRat Ry = 3.20a, z = 0. Time
is normalized with the Alfeh frequencyva which is defined at the magnetic axis throug
the Alfvén velocity and the major radius.

The initial energetic alpha particle distribution is the slowing-down distribution whi
is isotropic in the velocity space. The number density of alpha particles is in propor
to the MHD pressure. The sum of the alpha particle pressure and the MHD pressure
equal to the equilibrium pressure. Here the alpha particle pressure is half the equilib
pressure. The minimum and maximum energies of the slowing-down distribution are
and 1.8n,v3, respectively. The Larmor frequency of the alpha particle is 102 times lar
than the Alf\én frequency.

A fourth-order finite difference algorithm is used for the MHD equations. The numbe
grid points are 65 65 in the poloidal plane. Six runs with various number of particles &
carried out. The numbers of used particles ar@ @, 4x10°, 1.6x 10%, 6.4x 10%, 2.6x 10°,
and 105 x 1(P, respectively.

Stability of n=2 modes is investigated. The equilibrium is initially perturbed with
n = 2 magnetic field. Am =2 TAE mode is destabilized in the simulation, and the r:
dial profiles of the dominant poloidal harmonics of the electrostatic potential are show
Fig. 1. Thisn =2 TAE mode consists mainly off(=2, n=2) and (n=3, n=2) harmon-
ics. Time evolution of the real part of then& 2, n=2) harmonic of§B; atr =0.25a in
the N = 1.6 x 10* run is shown in Fig. 2. The real frequency i88v,. Time evolutions
of its amplitude in runs witiN =1 x 10°, N =4 x 10, andN =2.6 x 10° are shown
in Fig. 3. An oscillation in the amplitude appears fdr= 1 x 10°. This oscillation is a
manifestation of destabilization of an additiomal= 2 TAE mode which consists mainly
of (m = 3,n = 2) and (M = 4, n = 2) harmonics and peaks around the- 7/4 magnetic
surface. The oscillation in amplitude is a beat between two TAE modes. The seeofd
TAE mode is hidden in the other five runs, since its growth rate is much smaller than th
the first mode. For this poitl = 1 x 10° is not sufficient for study on = 2 TAE modes.

The number of used particles and the linear growth rates are plotted in Fig. 4. The |
growth rate converges for large numbers of used particles. Comparing to the run

Amplitude (a. u.)

r/a

FIG. 1. Radial profiles of the dominant poloidal harmonics of the electrostatic potential of-ar®2 TAE
mode and the-profile.
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Re 8B (a.u.)

FIG. 2. Time evolution of real part of then{=2, n=2) harmonic of§B, atr =0.25a in the N=1.6 x
10* run.The derived real frequency is3Gwa.

N = 1.05 x 1(P, deviations in growth rate of the runs wibh larger than 4x 10° are less
than 10%. Therefore, we conclude that we can investigate the linear stabilitynof=a
TAE mode with 4x 10° particles if we tolerate 10% error in growth rate.

4. SUMMARY AND DISCUSSION

A particle algorithm for linear kinetic analysis in tokamak plasmas is developed. Lii
stability of a tokamak plasma is analyzed as an initial value problem. Particles are
to sample plasma elements along equilibrium characteristics in four-dimensional |
space R, z, v, ). Each particle is accompanied with a weight which is a function of
toroidal angle. Destabilization of an= 2 TAE mode is investigated. The linear growt

Amplitude (a. u.)

FIG. 3. Time evolutions of amplitude of the(= 2,n = 2) harmonic of§B, atr = 0.25a in runs with
N=1x10 N =4x 10, andN = 2.6 x 10°.
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v/@

FIG. 4. Plotted is the linear growth rate for number of used particles.

rate converges for large numbers of used particles. We can investigate the linear stabi
ann = 2 TAE mode with 4x 10° particles if we tolerate 10% error in growth rate.

The small growth rate of TAE mode against its real frequency allows one to adopt a
turbative approach with preliminary MHD analysis. In this paper, however, we investig:
the stability of the TAE mode without any preliminary analysis. With the new algoritt
developed in this paper any preliminary analysis is not necessary. Furthermore, this nc
turbative approach enables us to investigate other kinetic issues in tokamak plasma
instance, analysis of energetic particle effects on the internal kink mode can be stre
forward. The ion-temperature-gradient mode also can be analyzed if we apply the
algorithm to bulk ions and couple the ion density with the gyrokinetic Poisson equation
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