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A particle algorithm for linear kinetic analysis in tokamak plasmas is developed.
Linear kinetic stability of a tokamak plasma is analyzed as an initial value problem.
Particles are used to sample plasma elements along equilibrium characteristics in
4-dimensional phase space (R, z, v‖, µ). Each particle is accompanied with a weight
which is a function of the toroidal angle. Integrals in the phase space are eval-
uated through the weight function and the particle location in the 4-dimensional
space. Destabilization of ann = 2 toroidal Alfvén eigenmode is investigated as
a test of the algorithm, and convergence in number of used particles is assessed.
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1. INTRODUCTION

Kinetic analysis on magnetically confined plasmas is not so easy since the phase space
concerned has a high dimension which demands large computational resources to analyze.
Another difficulty is the complicated characteristics of the Vlasov equation. The character-
istics are nothing but the particle orbits. For example, particle orbits deviate from magnetic
surfaces, and passing and trapped particles show qualitatively different behaviors from each
other. Thus, even the linear analysis is not a simple task.

Turning to nonlinear analysis, particle simulation has been a powerful tool for the inves-
tigation of nonlinear kinetic phenomena in fusion and space plasmas. Super-particles are
used in particle simulations, and the number of super-particles is much less than the number
of particles in real plasmas. Since the electromagnetic field is coupled with low-order ve-
locity moments in the phase space, charge density, and current density, the required number
of super-particles can be reasonable. The small number of super-particles, however, lead
to a thermal fluctuation much larger than that in a real plasma. Large thermal fluctuation,
called numerical noise, makes it difficult to deal with a phenomenon with small amplitude.
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Recently, this drawback has been relaxed by the so-calledδ f algorithm [1–3], which was
developed in the fusion community. Furthermore, Aydemir [4] gave a clear interpretation
of theδ f algorithm from a viewpoint of Monte Carlo simulation.

Theδ f algorithm gives a fine prospect also of linear properties. The linear property of
an instability can be studied with theδ f particle simulation as an initial value problem if
initial perturbations are set to be sufficiently small.

Theδ f algorithm, however, can be improved for linear analysis. In this paper, we develop
a particle simulation algorithm for linear kinetic phenomena in tokamak plasmas. With this
algorithm computational resources required in theδ f particle simulation can be reduced.
Super-particles are used as markers in the phase space. These marker particles are followed
along their equilibrium orbits, and each of them is accompanied with a weight function.
Integrals in the phase space such as number density, current density, and pressures are
evaluated through the particle location and the weight function. Although this new algorithm
is similar to theδ f particle algorithm, an essential difference is that particle weights are
functions of independent variables on which the equilibrium distribution is symmetric.

For example, in an axisymmetric plasma such as a tokamak plasma, the weight is a
function of the toroidal angle. Toroidal location of each particle has no meaning. Generally,
the phase space of a tokamak plasma with the drift-kinetic or the gyro-kinetic description
is a five-dimensional space (R, ϕ, z, v‖, µ) which demands large computational resources
to study kinetic phenomena. The new algorithm reduces the phase space for particles to
four-dimensions (R, z, v‖, µ). Thus the required number of particles also can be reduced.

This new simulation algorithm can be applied to general linear kinetic phenomena of
plasmas which have a symmetric direction(s) in equilibrium. In this paper, we apply it to
the toroidal Alfvén eigenmode (TAE mode) [5] in a tokamak plasma. The TAE mode has
attracted many scientists from the viewpoints of the basic plasma physics on the wave-
particle interaction and the confinement of energetic alpha particles in fusion devices.

We adopt a hybrid model in which plasma is divided into two parts, the energetic particles
and the background plasma. The background plasma is described as a magnetohydrody-
namic (MHD) fluid. We couple the linear particle algorithm with a linearized MHD code
employing this hybrid model. Linear simulations are carried out for ann = 2 TAE mode.
The mode structure, real frequency, and linear growth rate are obtained.

The linear particle algorithm is described in Section 2. Section 3 is devoted to the plasma
model and the results of the linear simulation for then = 2 TAE mode. Summary and
discussion are given in Section 4.

2. A LINEAR PARTICLE ALGORITHM

We employ the guiding-center approximation. Let us start by describing the guiding-
center velocityu for a particle in an electromagnetic fieldE andB,

u = v∗
‖ + vE + vB, (1)

v∗
‖ = v‖[b + ρ‖∇ × b], (2)

vE = 1

B
[E × b], (3)

vB = 1

q B
[−µ∇B × b], (4)
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ρ‖ = mv‖
q B

, (5)

b = B
B

, (6)

mv‖
dv‖
dt

= v∗
‖ · [qE − µ∇B], (7)

wherem, q, v‖, andµ are the particle mass, particle charge, parallel velocity, and magnetic
moment, respectively.

From Eqs. (1)–(7) we obtain the drift kinetic equation which describes the time evolution
of the distribution function in the phase space (R, ϕ, z, v‖, µ),

∂

∂t
f + 1

B
∇ · (Bu f ) + ∂

∂v‖

(
dv‖
dt

f

)
+ f

∂

∂t
ln B = 0. (8)

We neglect for simplicity the compressibility in the phase space with the present guiding-
center approximation. Namely, we assume that the following relation is always satisfied:

1

B
∇ · (Bu) + ∂

∂v‖

(
dv‖
dt

)
+ ∂

∂t
ln B = 0. (9)

Equation (8) can be simplified with the aid of this assumption into,

∂

∂t
f + u · ∇ f + dv‖

dt

∂

∂v‖
f = 0. (10)

For linear analysis the distribution functionf is divided into two parts, the initial equi-
librium distribution f0 and the deviationδ f . Equation (10) is then linearized into

∂

∂t
δ f + u0 · ∇δ f +

(
dv‖
dt

)
0

∂

∂v‖
δ f = −

[
u1 · ∇ f0 +

(
dv‖
dt

)
1

∂

∂v‖
f0

]
, (11)

u0 = v‖[b0 + ρ‖∇ × b0] + 1

q B
[−µ∇B × b0], (12)(

dv‖
dt

)
0

= [b0 + ρ‖∇ × b0] ·
[
− µ

m
∇B

]
, (13)

u1 = v‖δb + 1

B
[E × b0], (14)(

dv‖
dt

)
1

= [b0 + ρ‖∇ × b0] ·
[

q

m
E
]

+ δb ·
[
− µ

m
∇B

]
,

(15)

δb = b − b0, (16)

where we neglect the deviation of magnetic field intensity “δB” since many of the inter-
ested modes in tokamak plasmas are incompressible. Furthermore, the termv‖ρ‖∇ × δb is
neglected in Eq. (14) since it is much smaller thanv‖δb.

Let us consider an integral of the form

δ I (A) ≡
∫

V
Aδ f J d R dϕ dz dv‖ dµ, (17)
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whereA is a general function of the phase-space coordinates,V is the phase space volume,
andJ ≡ B R is the Jacobian of the transformation from (R, ϕ, z, v‖, µ) to an appropriate
Cartesian coordinate system.

Following Aydemir [4] we develop a particle algorithm to estimateδ I (A). We express
δ f in a form ofδ f = g(R, ϕ, z, v‖, µ) f0(R, z, v‖, µ). Equation (17) is transformed into

δ I (A) =
∫ 2π

0
dϕ

∫
V4

Ag f0J d R dz dv‖ dµ, (18)

whereV4 is the four-dimensional phase space volume.
According to Eq. (17) of Aydemir [4] a particle-estimate for the second integral of the

right-hand side of Eq. (18) is given by∫
V4

Ag f0J d R dz dv‖ dµ

' 1

N

N∑
j =1

A(Rj , ϕ, zj , v‖ j , µ j )g(Rj , ϕ, zj , v‖ j , µ j ) f0(Rj , zj , v‖ j , µ j )

p(Rj , zj , v‖ j , µ j )
, (19)

where N is the number of super-particles andp is a probability density in the four-
dimensional phase-space volume such that∫

V4

p(R, z, v‖, µ)J d R dz dµ dv‖ = 1. (20)

We adopt the importance sampling method in which the probability density is given by

p(R, z, v‖, µ) = 1

Ns
f0(R, z, v‖, µ), (21)

whereNs is the number of physical particles per unit toroidal angle. If we initially distribute
super-particles to satisfy the relation above, it is satisfied throughout the analysis.

We define a weight function of thej th particle as

w j (ϕ) ≡ 1

N
g(Rj , ϕ, zj , v‖ j , µ)

f0(Rj , zj , v‖ j , µ j )

p(Rj , zj , v‖ j , µ j )
. (22)

The particle-estimate forδ I (A) is

δ I (A) =
∫ 2π

0

N∑
j =1

A(Rj , ϕ, zj , v‖ j , µ j )w j (ϕ) dϕ. (23)

Our goal is to obtain the equation for the time evolution of the weight function. From
Eqs. (21) and (22), the weight function can be related toδ f as,

δ f (Rj , ϕ, zj , v‖ j , µ j ) = g(Rj , ϕ, zj , v‖ j , µ j ) f0(Rj , zj , v‖ j , µ j )

= N

Ns
f0(Rj , zj , v‖ j , µ j )w j (ϕ). (24)
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It is convenient to normalizew j (ϕ) to satisfy

δ f (Rj , ϕ, zj , v‖ j , µ j ) = f0(Rj , zj , v‖ j , µ j )w j (ϕ). (25)

We substitute Eq. (25) into Eq. (11) and obtain

D

Dt
w j (ϕ) + u0ϕ

∂

R∂ϕ
w j (ϕ) = − 1

f0

[
u1 · ∇ f0 +

(
dv‖
dt

)
1

∂

∂v‖
f0

]
, (26)

D

Dt
≡ ∂

∂t
+ u0R

∂

∂ R
+ u0z

∂

∂z
+
(

dv‖
dt

)
0

∂

∂v‖
. (27)

If the weight function and the electromagnetic field have a form ofeinϕ such as

w j (ϕ) = w
†
j e

inϕ, (28)

Eq. (26) is transformed into,

D

Dt
w
†
j = − inu0ϕ

R
w
†
j − 1

f0

[
u†1 · ∇ f0 +

(
dv‖
dt

)†
1

∂

∂v‖
f0

]
. (29)

Expansion to multiple toroidal mode numbers is straightforward.
Finally we show the particle-estimates of the first-order number density, current density,

parallel and perpendicular pressures. They are given by

δn =
N∑

j =1

w j (ϕ)S(R − Rj )S(z − zj ), (30)

δj = q
N∑

j =1

w j (ϕ)u j S(R − Rj )S(z − zj ), (31)

δP‖ =
N∑

j =1

w j (ϕ)mv2
‖ j S(R − Rj )S(z − zj ), (32)

δP⊥ = B
N∑

j =1

w j (ϕ)µ j S(R − Rj )S(z − zj ), (33)

whereS is the shape factor of a particle.

3. APPLICATION TO TAE MODE

TAE mode [5] has recently become a focus of attention for fusion physicists, since it
can be excited resonantly with alpha particles which are produced from deuterium–tritium
reactions. The free energy source for TAE modes is the spatial gradient of the alpha particle
density.

Evaluation of the linear growth rate is one of the major issues on TAE mode. It is necessary
to know precisely the interaction between alpha particles and TAE modes. The interaction
is not simple, since drift-orbits of alpha particles deviate from magnetic surfaces and not
only passing particles, but also trapped particles, can resonate with TAE modes.
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We apply the linear particle algorithm developed in the previous section to energetic
particles which interact with a TAE mode. The plasma is divided into two parts, the back-
ground plasma and the energetic particles. The background plasma is described by the ideal
MHD equations and the electromagnetic field is given by the MHD description. This is a
reasonable approximation under the condition that the alpha density is much less than the
background plasma density. This model is first proposed by Ref. [6], and conservation of
the total energy is proved in Ref. [7].

The MHD equations with the effect of energetic particles are

∂ρ

∂t
= −∇ · (ρv), (34)

ρ
∂

∂t
v + ρv · ∇v =

(
1

µ0
∇ × B − j ′h

)
× B − ∇P, (35)

∂B
∂t

= −∇ × E, (36)

∂ P

∂t
= −∇ · (Pv) − (γ − 1)P∇ · v, (37)

j ′h = jh‖ + 1

B
(Ph‖∇ × b − Ph⊥∇ ln B × b) − ∇ ×

(
Ph⊥
B

b
)

, (38)

E = −v × B, (39)

whereµ0 is the vacuum magnetic permeability andγ is the adiabatic constant, and all other
quantities are conventional.

All MHD variables are linearized around their equilibrium distribution:

∂ρ1

∂t
= −∇ · (ρ0v), (40)

ρ0
∂

∂t
v =

(
1

µ0
∇ × B1 − j ′h1⊥

)
× B0 +

(
1

µ0
∇ × B0 − j ′h0⊥

)
× B1 − ∇P1, (41)

∂B1

∂t
= −∇ × E, (42)

∂ P1

∂t
= −∇ · (P0v) − (γ − 1)P0∇ · v, (43)

j ′h0⊥ = 1

B0
(Ph‖0∇ × b0 − Ph⊥0∇ ln B0 × b0) − ∇ ×

(
Ph⊥0

B0
b0

)
, (44)

j ′h1⊥ = 1

B0
(Ph‖1∇ × b0 + Ph‖0∇ × b1 − Ph⊥1∇ ln B0 × b0

− Ph⊥0∇ ln B0 × b1) − ∇ ×
(

Ph⊥1

B0
b0

)
− ∇ ×

(
Ph⊥0

B0
b1

)
, (45)

E = −v × B0. (46)

For the calculation ofj ′h1⊥, terms withB1 are neglected, since TAE modes are incompress-
ible.

The initial condition is an MHD equilibrium, where the total plasma beta is 4% at the
magnetic axis and its volume-average〈βα〉 is 0.88%. Density is uniform. The cylindrical
coordinate system (R, ϕ, z) is used. The simulation domain is 2a ≤ R ≤ 4a, −a ≤ z ≤ a,
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wherea is the minor radius. The magnetic axis locates atR = R0 ≡ 3.20a, z = 0. Time
is normalized with the Alfv´en frequencyωA which is defined at the magnetic axis through
the Alfvén velocity and the major radius.

The initial energetic alpha particle distribution is the slowing-down distribution which
is isotropic in the velocity space. The number density of alpha particles is in proportion
to the MHD pressure. The sum of the alpha particle pressure and the MHD pressure is set
equal to the equilibrium pressure. Here the alpha particle pressure is half the equilibrium
pressure. The minimum and maximum energies of the slowing-down distribution are 0.05
and 1.8mαv2

A, respectively. The Larmor frequency of the alpha particle is 102 times larger
than the Alfvén frequency.

A fourth-order finite difference algorithm is used for the MHD equations. The number of
grid points are 65× 65 in the poloidal plane. Six runs with various number of particles are
carried out. The numbers of used particles are 1×103, 4×103, 1.6×104, 6.4×104, 2.6×105,

and 1.05× 106, respectively.
Stability of n = 2 modes is investigated. The equilibrium is initially perturbed with an

n = 2 magnetic field. Ann = 2 TAE mode is destabilized in the simulation, and the ra-
dial profiles of the dominant poloidal harmonics of the electrostatic potential are shown in
Fig. 1. Thisn = 2 TAE mode consists mainly of (m= 2, n = 2) and (m= 3, n = 2) harmon-
ics. Time evolution of the real part of the (m= 2, n = 2) harmonic ofδBr at r = 0.25a in
the N = 1.6 × 104 run is shown in Fig. 2. The real frequency is 0.33ωA. Time evolutions
of its amplitude in runs withN = 1 × 103, N = 4 × 103, and N = 2.6 × 105 are shown
in Fig. 3. An oscillation in the amplitude appears forN = 1 × 103. This oscillation is a
manifestation of destabilization of an additionaln = 2 TAE mode which consists mainly
of (m = 3, n = 2) and (m = 4, n = 2) harmonics and peaks around theq = 7/4 magnetic
surface. The oscillation in amplitude is a beat between two TAE modes. The secondn = 2
TAE mode is hidden in the other five runs, since its growth rate is much smaller than that of
the first mode. For this pointN = 1× 103 is not sufficient for study onn = 2 TAE modes.

The number of used particles and the linear growth rates are plotted in Fig. 4. The linear
growth rate converges for large numbers of used particles. Comparing to the run with

FIG. 1. Radial profiles of the dominant poloidal harmonics of the electrostatic potential of ann = 2 TAE
mode and theq-profile.
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FIG. 2. Time evolution of real part of the (m= 2, n = 2) harmonic ofδBr at r = 0.25a in the N = 1.6 ×
104 run.The derived real frequency is 0.33ωA.

N = 1.05× 106, deviations in growth rate of the runs withN larger than 4× 103 are less
than 10%. Therefore, we conclude that we can investigate the linear stability of ann = 2
TAE mode with 4× 103 particles if we tolerate 10% error in growth rate.

4. SUMMARY AND DISCUSSION

A particle algorithm for linear kinetic analysis in tokamak plasmas is developed. Linear
stability of a tokamak plasma is analyzed as an initial value problem. Particles are used
to sample plasma elements along equilibrium characteristics in four-dimensional phase
space (R, z, v‖, µ). Each particle is accompanied with a weight which is a function of the
toroidal angle. Destabilization of ann = 2 TAE mode is investigated. The linear growth

FIG. 3. Time evolutions of amplitude of the (m = 2, n = 2) harmonic ofδBr at r = 0.25a in runs with
N = 1 × 103, N = 4 × 103, andN = 2.6 × 105.
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FIG. 4. Plotted is the linear growth rate for number of used particles.

rate converges for large numbers of used particles. We can investigate the linear stability of
ann = 2 TAE mode with 4× 103 particles if we tolerate 10% error in growth rate.

The small growth rate of TAE mode against its real frequency allows one to adopt a per-
turbative approach with preliminary MHD analysis. In this paper, however, we investigated
the stability of the TAE mode without any preliminary analysis. With the new algorithm
developed in this paper any preliminary analysis is not necessary. Furthermore, this nonper-
turbative approach enables us to investigate other kinetic issues in tokamak plasmas. For
instance, analysis of energetic particle effects on the internal kink mode can be straight-
forward. The ion-temperature-gradient mode also can be analyzed if we apply the new
algorithm to bulk ions and couple the ion density with the gyrokinetic Poisson equation [8].
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